ΣIDERWIN project
Electrification of primary steel production for direct CO$_2$ emission avoidance.
Outlook

1. Steel production and its environmental significance
 – Main figures
 – Steel – Energy coupling

2. New steel process for low CO$_2$ emissions
 – Primary steel production by electricity
 – Chemical route to solve multivalencies of iron

3. Electrolysis processing route
 – Design by thermodynamic optimisation
 – ΣIDERWIN project
Steel production and use

Yearly production (Mt)

1880 1900 1920 1940 1960 1980 2000 2020

Iron Ore

Crude Steel

WorldSteel
USGS

Hervé Lavelaine de Maubeuge
ArcelorMittal
27.06.2019
Steel production and use

• Steel – Energy coupling

No steel without energy

EUROFER - The European Steel Association

~500 kg\(_{\text{Carbon}} \cdot \text{t}^{-1}\)\(_{\text{steel}}\)

~267-500 t\(_{\text{steel}} \cdot \text{MW}^{-1}\)

No energy without steel
Steel production and use

- \(\text{CO}_2 \) emissions

The steel industry generates between 7 and 9% of direct emissions from the global use of fossil fuel.

Energy

| Energy | 18.6 GJ.t\(^{-1}\)\text{steel} | 5.2 MWh.t\(^{-1}\)\text{steel} |

\(\text{Fe}_2\text{O}_3 + \text{C} + \text{O}_2 \rightarrow \text{CO}_2 + \text{Fe} \)
New steel process for low CO$_2$ emissions

- Primary steel production: energy need

\[
\frac{1}{2} \text{Fe}_2\text{O}_3 \text{ (s, 25ºC)} \rightleftharpoons \text{Fe} \text{ (s, 25ºC)} + \frac{3}{4} \text{O}_2 \text{ (g, 1 atm, 25ºC)}
\]

- Total energy need :
 \[\Delta H = 2.1 \text{ MWh.}t_{\text{Fe}}^{-1} \text{ or } 7.4 \text{ GJ.}t_{\text{Fe}}^{-1}\]
- Heat need 10% of total energy :
 \[\Delta H - \Delta G = 0.2 \text{ MWh.}t_{\text{Fe}}^{-1} \text{ or } 0.7 \text{ GJ.}t_{\text{Fe}}^{-1}\]
heating is taken by cooling atmosphere
- Work need 90% of total energy :
 \[\Delta G = 1.9 \text{ MWh.}t_{\text{Fe}}^{-1} \text{ or } 6.7 \text{ GJ.}t_{\text{Fe}}^{-1}\]
New steel process for low CO$_2$ emissions

- Choice of an energy form to produce iron metal

$$\frac{1}{2}\text{Fe}_2\text{O}_3 \ (s, \ 25^\circ C) \rightleftharpoons \text{Fe} \ (s, \ 25^\circ C) + \frac{3}{4}\text{O}_2 \ (g, \ 1\text{atm, } 25^\circ C)$$

Electrical $\Delta V = 1.28 \text{ V}$
- at $25^\circ C$
- 1atm, $v=0$
- no reactant

Mechanical
- Vacuum $P_{\text{O}_2} = 10^{-87}$ atm
- Centrifugation $v=500 \text{ km.s}^{-1}$
- at $25^\circ C$
- $\Delta V=0$
- no reactant

Chemical
- $\mu=\text{CH}_2\text{O}$
- at $25^\circ C$
- 1atm, $v=0$
- $\Delta V=0$

Thermal
- $T=3414^\circ C$
- at 1atm, $v=0$
- no reactant
- $\Delta V=0$
New steel process for low CO$_2$ emissions

- Chemical energy form

 \[
 \frac{1}{2} \text{Fe}_2\text{O}_3 (s, 25^\circ\text{C}) + X \rightleftharpoons \text{Fe} (s, 25^\circ\text{C}) + \text{XO}_{3/2}
 \]

- No adjustment of chemical potential.
New steel process for low CO$_2$ emissions

• Electrical energy form:
 – it provides thermodynamic need.
 – It controls activation, kinetic.
 – It is adjustable.

► It requires electrical charges to transfer electrical energy into chemical energy by charge separation.
New steel process for low CO$_2$ emissions

Acid:
- Higher ΔE
- Soluble cations
- Multiple cations

Alkaline:
- Slightly higher ΔE
- Low solubility
- Single cation

Pourbaix diagram
New steel process for low CO$_2$ emissions

- Electrochemical mechanism of hematite reduction

1. Chemical reaction
2. Galvanic coupling
3. ElectrocrySTALLisation

Pourbaix diagram

\[
\begin{align*}
H\text{FeO}^- + Fe_2O_3 &\rightarrow Fe_3O_4 + OH^- \\
Fe_3O_4 + Fe + 4OH^- &\rightarrow 4H\text{FeO}^- \\
H\text{FeO}^- + H_2O + 2e^- &\rightarrow Fe + 3OH^- \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Minerals</th>
<th>Conductivity (S.cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>1×10^7</td>
</tr>
<tr>
<td>α Fe$_3$O$_3$</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>2×10^2</td>
</tr>
</tbody>
</table>
New steel process for low CO$_2$ emissions

• Experimental check on a single particle
Electrolysis processing route

- Chemical route to solve multivalencies of iron

\[
\frac{1}{2} \text{Fe}_2\text{O}_3 \rightarrow \text{Fe} + \frac{3}{4}\text{O}_2
\]

- Low temperature electrolysis: 110°C.
- Conductive aqueous alkaline electrolyte medium 50wt% NaOH - H₂O.
- Electrolysis is applied to 10 µm hematite solid particles rather than dissolved ions.
- High reaction rate with current density 1000 A.m⁻².
- Anodic gaseous O₂ production.
- Non-consumable anode.
- Cathodic Iron grown as solid state deposit.
- Non critical elements in electrode materials, Ni anodes.
Electrolysis processing route

• Design by thermodynamic optimisation

- The condition of simultaneous uniform potential and current density is constant curvature electrodes.
- Separation of reaction products by proper orientation towards gravity. Ratchet effect by gravity separation of oxygen from iron.
- Uniform and non-accumulating supply of solid particles to the cathode surface by moderate electrolyte flow rate.
- Anode is a gas-electricity exchanger: maximum openness to gas upward flow, minimum inter electrodes gap distance.
- Full collection and minimum residence time of gas by a 45° electrodes inclination and counter flowing gas. Bubble engineering.

Hervé Lavelaine de Maubeuge
ArcelorMittal
27.06.2019
Electrolysis processing route

- Steady operation: thermal, hydraulic, electric.
- No separator as membrane, diaphragm between electrodes.
- Distance between electrodes 1 cm.
- Productivity x3 compared to Ni et Co.
- Self-standing, stiff, compact and conveyable metal plates.
- Low voltage $\Delta V=1.7\text{V}$.
- Full recovery of oxygen gas.
- Cheap construction materials.
Electrolysis processing route

• SIDERWIN project
• 5 years project 2017-2022
• Budget: 6.8 M€ includes 2.2 M€ for pilot.
• 7 different countries.
• 12 partners: 4 Companies + 4 SMEs + 4 RTO
• Multisectorial: steel, non-ferrous and power.
• Coordinated by ArcelorMittal.
Electrolysis processing route

- **SIDERWIN project: objectives**
 - A new processing route for steel.
 - Overall energy consumption $3.6 \text{ MWh.t}^{-1}_{\text{Fe}}$ or $13 \text{ GJ.t}^{-1}_{\text{Fe}}$.
 - Reduction by 31% of the direct energy use.
 - Reduction by 87% of the direct CO$_2$ emissions.
Electrolysis processing route

Basic experimental work
- Corroborate basic observations
- Proof-of-concept
Components integration
- Configuration matches final application
- Full-scale prototype
- Engineering-scale prototype
- Operated final form
- Tested final form

2005
- Basic experimental work
2006
- Corroborate basic observations
2007
- Proof-of-concept
2009
- Components integration
2017
- Engineering-scale prototype
2022
- Operated final form

2005
- 10 µm iron oxide
- Iron metal

2006
- 10 µm iron oxide
- Iron metal

2007
- 10 µm iron oxide
- Iron metal

2009
- 10 µm iron oxide
- Iron metal

2017
- 10 µm iron oxide
- Iron metal

IERO
ASCoPE

SIDERWIN

SPRE

Hervé Lavelaine de Maubeuge
ArcelorMittal
27.06.2019
Electrolysis processing route

- SIDERWIN project: development of key components of the technology to achieve TRL5

Electrodes: 3x1 m
Current intensity: 3kA
Power: 6kW
Electrolyte volume: 300L

Production:
Iron metal samples of 100kg.

Continuous and automated iron ore supply.
Gas oxygen collection.
Metal harvesting system.
Vertical extension for low footprint.
Electrolysis processing route

- **SIDERWIN project: operation in a relevant environment TRL6**

Flexible metal production:
- Contribute to integration of RES.
- Integration to power grid.

Enlarge iron oxide sources:
- Non-conventional feedstock.
- Residues from Al, Ni and Zn metallurgies.

Develop new business models:
- New service as residue treatment.
- New service as Demand Side Response.
Electrolysis processing route

- https://www.siderwin-spire.eu/content/home
- https://www.youtube.com/watch?v=0SG421hiKXA
Acknowledgement

• “This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 768788”.

• “This study reflects only the author’s views and the Commission is not responsible for any use that may be made of the information contained therein”